ELLA: An Efficient Lifelong Learning Algorithm

نویسندگان

  • Paul Ruvolo
  • Eric Eaton
چکیده

The problem of learning multiple consecutive tasks, known as lifelong learning, is of great importance to the creation of intelligent, general-purpose, and flexible machines. In this paper, we develop a method for online multi-task learning in the lifelong learning setting. The proposed Efficient Lifelong Learning Algorithm (ELLA) maintains a sparsely shared basis for all task models, transfers knowledge from the basis to learn each new task, and refines the basis over time to maximize performance across all tasks. We show that ELLA has strong connections to both online dictionary learning for sparse coding and state-of-the-art batch multi-task learning methods, and provide robust theoretical performance guarantees. We show empirically that ELLA yields nearly identical performance to batch multi-task learning while learning tasks sequentially in three orders of magnitude (over 1,000x) less time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Lifelong Learning with Active Task Selection

The recently developed Efficient Lifelong Learning Algorithm (ELLA) acquires knowledge incrementally over a sequence of tasks, learning a repository of latent model components that are sparsely shared between models. ELLA shows strong performance in comparison to other multi-task learning algorithms, achieving nearly identical performance to batch multi-task learning methods while learning task...

متن کامل

Robotic Search & Rescue via Online Multi-task Reinforcement Learning

Reinforcement learning (RL) is a general and well-known method that a robot can use to learn an optimal control policy to solve a particular task. We would like to build a versatile robot that can learn multiple tasks, but using RL for each of them would be prohibitively expensive in terms of both time and wear-and-tear on the robot. To remedy this problem, we use the Policy Gradient Efficient ...

متن کامل

Online Multi-Task Gradient Temporal-Difference Learning

Reinforcement learning (RL) is an essential tool in designing autonomous systems, yet RL agents often require extensive experience to achieve optimal behavior. This problem is compounded when an RL agent is required to learn policies for different tasks within the same environment or across multiple environments. In such situations, learning task models jointly rather than independently can sig...

متن کامل

ELLA: An Efficient Lifelong Learning Algorithm - Online Appendix

where we use tick marks to denote the updated versions of D(t) and s(t) after receiving the new training data, and D(t) 1 2 is the matrix square-root of D(t). The updates to A consist of adding or subtracting an outer-product of a matrix of size (d × k)-by-d, which implies that each update has rank at most d. If we have already computed the eigenvalue decomposition of the old A, we can compute ...

متن کامل

Online Multi-Task Learning based on K-SVD

This paper develops an efficient online algorithm based on K-SVD for learning multiple consecutive tasks. We first derive a batch multi-task learning method that builds upon the K-SVD algorithm, and then extend the batch algorithm to train models online in a lifelong learning setting. The resulting method has lower computational complexity than other current lifelong learning algorithms while m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013